Tetrahedron Letters, Vol.30, No.45, pp 6189-6192, 1989 0040-4039/89 \$3.00 + .00 Printed in Great Britain

LIPASE-CATALYZED ASYMMETRIC SYNTHESIS OF CHIRAL 1,3-PROPANEDIOLS AND ITS APPLICATION TO THE PREPARATION OF OPTICALLY PURE BUILDING BLOCK FOR RENIN TNHIBTTORS.

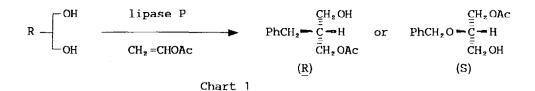
> Keiichiro Tsuji, Yoshiyasu Terao, and Kazuo Achiwa* School of Pharmaceutical Sciences, University of Shizuoka 395 Yada, Shizuoka 422, Japan

Abstract: Asymmetric synthesis of chiral 2-substituted-1,3-propanediols was realized by the lipase-catalyzed transesterification in vinyl acetate and it was applied to the synthesis of an optically active sulfone derivative.

Chiral 1,3-propanediols are useful building blocks for the syntheses of biologically active compounds. Recently, chiral 2-substituted propanediols have been reported to be prepared by diastreoselective reactions. On the other hand, Enzyme-catalyzed asymmetric syntheses have been recognized as a practical method for synthesis of chiral compounds.* We have already reported facile synthesis of chiral 2-O-alkylglycerol monoesters by the transesterification catalyzed with lipase in organic medium.³ We now wish to describe lipase-catalyzed asymmetric synthesis of chiral 1,3-propanediols and its application to synthesis of optically pure (S)-3-isopropylsulfonyl-2benzylpropionic acid which was a key compound for synthesis of renin inhibitor.*

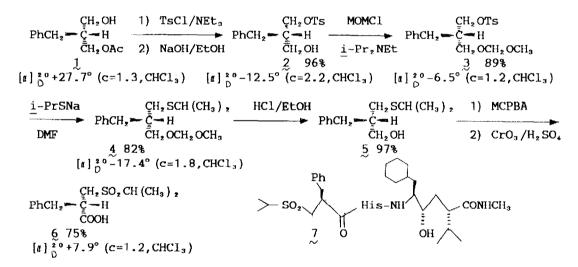
 $R - \begin{bmatrix} - OH \\ + CH_2 = CHOCOCH_3 \end{bmatrix} \xrightarrow{\text{lipase}} R - \begin{bmatrix} OCOCH_3 \\ * \\ - OH \end{bmatrix} + CH_2 = CHOCOCH_3 \xrightarrow{\text{chock}} R - \begin{bmatrix} OCOCH_3 \\ * \\ - OH \end{bmatrix} + CH_3 CHO$

 $R = CH_3$, $(CH_3)_2CH$, $CH_2 = CHCH_2$, $C_6H_5CH_2$, $C_{10}H_7CH_2$,


We used lipase P (from pseudomonas fluorescens)⁵ and lipase B (from pseudomonas fragi)⁵ for these reactions based on our knowledge. The lipasecatalyzed transesterification of 1,3-propanediols proceeded smoothly in 1.5 molar excess of vinyl acetate to afford optically active monoester although the formation of a small amount of diester was observed. The rate of esterification by lipase B was much faster than that by lipase P. However,

Entry	Substrate	Lipase	Time	Monoacetate	
			(hr)	СҲ(\$)ь,	OY(%ee)°'
	CH ₃ - OH				
1	CH ₃ -	lipase P	2.5	70	60 (R)
	LOH	lipase B	0.5	44	30 (R)
.	CH_3) _z CH - OH_{OH}				
2 (0	CH_3) ₂ CH -	lipase P	6	85	61 ^a)
	⊢OH	lipase B	1	55	38
•	e=CHCH ₂ - OH		_		
3 CH;	2 = CHCH2 -	lipase P		89	81°'
		lipase B	1	60	65
	PhCH ₂ - OH OH	line D	1.6		67 (m)
4	PhCH ₂ -	lipase P	1.5	96	97 (R)
		lipase B	0.5	80	77 (R)
5 1-1	NaphCH2- OH	lipase P	7	95	90 ^a)
- · ·	COH	lipase B	3.5	86	28
		TTPADE D		00	20
		lipase P	6	82	98°'
6	CH ₃	lipase B	1	55	95°)
	> CH ₃				
	но –				

Table 1 Lipase-Catalyzed Asymmetric Syntheses of Chiral 1,3-Propanediols*'


a) All reactions were carried out with substrate (5 mmol), vinylacetate (7.5 mmol), and lipase P (100 mg) or lipase B (50mg) at 25 °C. b) Isolated yield c) Optical yields were determined by HPLC analyses using the column packed with Chiralcel OB or OD (2-propanol/hexane system) after benzoylation of the hydroxy group except entries 4 and 5. d) Absolute configurations of the products are under investigation. e) (2R, 4S)-1-hydroxy-2, 4-dimethylpentyl acetate.

the enantioselectivity of lipase P was better than that of lipase B. It is noteworthy that 2-benzyl- and 2-(1-naphthylmethyl)propanediols gave the corresponding monoester in extremely high chemical and optical yields (entries 4 and 5) compared with the other cases as summarized in Table 1. In addition, It was unexpected that 2-benzyl-1,3-propandiol gave the (R)monoester⁸ (entry 5) because 2-O-benzylglycerol gave the (S)-monoester in high optical yield by the same lipase P-transesterification³ (Chart 1). This fact seems to offer some suggestions on designing the reaction model⁷ from the viewpoint of the enzymic discrimination of an enantiotopic group.

The lipase-catalyzed transesterification in vinyl acetate was undertaken for 1, 5-pentanediols. A similar transesterification of 2, 4-dimethyl-1, 5pentandiol (meso) afforded (2R, 4S)-1-hydroxy-2, 4-dimethylpentyl acetate⁸ in high optical yield (entry 6).

In order to demonstrate the usefulness of optically active 2-substituted-1,3-propanediols for syntheses of biologically active chiral compounds, we prepared optically pure (\underline{R}) -2-benzyl-3-isopropylsulfonyl-propionic acid which was reported to be a key compound for synthesis of renin inhibitor (7)⁴ (Chart 2).

Chart 2

The treatment of (\underline{R}) -2-benzyl-1-hydroxypropyl acetate $(\underline{1})$ with tosyl chloride followed by hydrolysis with sodium hydroxide in ethanol gave the (\underline{S}) -tosylate $(\underline{2})$ in quantitative yield. After protection of the hydroxy group of 2, the compound (3) reacted with sodium isopropylthiolate in DMF at room temperature to afford the sulfide (4) in 82% yield. The oxidation of 5 was first carried out with m-chloroperbenzoic acid, and the usual Jone's oxidation of the isolated sulfone gave (\underline{S}) -2-benzyl-3-isopropylsulfonyl-propionic acid (6). After treatment of 6 with diazomethane, the optical

purity of the methyl ester[®] was determined to be >97%ee by the HPLC analysis (Chiracel OC, 2-propanol/hexane). The renin inhibitor (7) can be synthesized from 6 according to the reported method.⁴

REFERENCES AND NOTES

- M. Ihara, M. takahashi, N. Taniguchi, K. Fukumoto, and T.Kametani, J. Chem. Soc. Commun., <u>1987</u>, 619.; T. Harada, I. Wada, and A. Oku, Tetrahedron Lett., <u>28</u>, 4181 (1987).
- "Application of Biochemical systems in Organic Chemistry", J. B. Jones, C. J. Sih, and D. Perlman, John Wiley & Sons Inc., New York, 1976; J. B. Jones, Tetrahedron, 42, 3351 (1988); H. Yamada and S. Shimizu, Angew. Chem. Int. Ed. Ingl., <u>27</u>, 622 (1988).
- 3. Y. Terao, M. Murata, K. Achiwa, T. Nishio, M. Akamatsu, and M. Kamimura, Tetrahedron Lett., 29, 5173 (1988).
- 4. Recently, the compound derived from 3-isopropyl (or t-butyl)-sulfonyl-2-benzylpropionic acid such as 7 have been identified as renin inhibitors; P. Buhlmayer, J. L. Stanton, W. Fuhrer, R. Goschke, V. Rasetti, H. Rueger, Eur. Pat., Appl. EP 236,734, 1987 [C. A., 109, 150039 (1988)].
- 5. Lipase P and Lipase B were supplied by Amano Pharmaceutical Co. Ltd. and Sapporo Breweries Ltd., respectively.
- 6. K. Mori and N. Chiba obtained (<u>R</u>)-2-benzyl-1-hydroxypropyl acetate, [a]²₀⁴ + 24.2, (c= 1.03, CHCl₃) (86.3%ee), by the lipase-catalyzed hydrolysis of 2-benzyl-1,3-propanediol diacetate; K. Mori and N. Chiba, Ann., in press.
- 7. M. Ohno and his co-workers proposed the active site model (Y-shaped) of pig liver esterase M. Ohno, "1985 Enzymes in Organic synthesis", Pitman, London (Ciba Foundation Symposium III), p 171-187, 1985.
- 8. [a] ²_D +11.7 (c=1.9 CHCl₃). C. J. Sih and his co-workers obtained (2S, 4R) -2, 3-dimethyl-1-hydroxypentyl acetate, [a] ²⁵_D -9.5 (89.7%ce), by the lipase-catalyzed hydrolysis of 1,5-diacetoxy-cis-2, 4-dimethylpentane; Y-F Wang, C-S Chen, G. Girdaukas, and C. J. Sih, J. Am. Chem. Soc., 106, 3695 (1984).
- 9. Structures of the new compounds obtained here were determined by their spectral data (IR, 'H-NMR, '3C-NMR, and high-resolution MS). The (R) isomer was also prepared from the compound obtained by protection of the hydroxy group of 1 with methyloxymethyl chloride according to a similar synthetic route.

(Received in Japan 15 July 1989)